Inventing New Reactions for a Green Economy
Chao-Jun Li1,*
1Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A0B8, Canada
Historically, one relies on Mother Nature to provide all the material needs of society. The development of modern chemistry has enabled us to transform our natural resources as well as to create new matters from existing ones to benefit the society, which has greatly enriched our modern living and increased the quality of life. The heroic creativity, imagination, and innovation of chemists have touched every corner of our daily life from the colorful clothes that we wear to the ever changing electronic products that we “play” with, from the pharmaceutical agents to combat life threatening diseases to synthetic fertilizers to boost crop productions for the world needs, from the rapid growing number of skyscrapers to the ever increasing speed of transportation. However, the state-of-arts of chemical industry is facing increasing challenges from resources, safety and environmental concerns.
Our future sustainability mandates fundamental innovations in sciences and technologies that can directly transform readily available feedstocks (more preferably renewable ones) and directly without the need for extensive manipulations could result in a positive impact on the three key interconnected pillars of sustainability: environment (waste minimization), resources, and energy. As part of this endeavor, we have explored new fundamental reactions that can drastically shorten synthetic steps, more directly transform renewable biomass and abundant feedstocks (CO2 and methane) into high valued products, and harvest solar light by chemical means and utilize photo-energy as energy input for chemical conversions. These new reactivities potentially provide some food-for-thought for the next generation of fundamental molecular transformations with an eye on our future sustainability.
Keywords: green chemistry, green economy, new chemical reactivities, sustainability
References:
[1]. Li, C.-J.; Trost, B. M. Proc. Natl. Acad. Sci (USA), 2008, 105, 13197.
[2]. Li, C.-J Acc. Chem. Res. 2002, 35, 533.
[3]. Li, C.-J. Acc. Chem. Res. 2010, 43, 581.
[4]. Li, C.-J. Chem, 2016, 1, 423-437.
[5]. Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
李朝軍,加拿大皇家科學(xué)院院士,發(fā)展中國(guó)家科學(xué)院院士(TWAS),中國(guó)化學(xué)會(huì)會(huì)士,美國(guó)科學(xué)促進(jìn)會(huì)會(huì)士(AAAS),美國(guó)化學(xué)學(xué)會(huì)會(huì)士,英國(guó)皇家化學(xué)會(huì)會(huì)士,加拿大化學(xué)化工學(xué)會(huì)會(huì)士,加拿大綠色化學(xué)首席科學(xué)家。鄭州大學(xué)學(xué)士(1983),中國(guó)科學(xué)院化學(xué)所碩士 (1988),加拿大麥吉爾大學(xué)博士(1992),斯坦福大學(xué)博士后(1992-1994),1994-2003年為美國(guó)杜蘭大學(xué)化學(xué)系助理,副,正教授。2003年起任加拿大麥吉爾大學(xué)化學(xué)系E. B. Eddy 教授,加拿大NSERC綠色化學(xué)CREATE中心主任, 魁北克省綠色化學(xué)和催化中心聯(lián)合主任等。李教授獲得了美國(guó)NSF Career Award (1997)、中國(guó)海外杰出青年基金(2000)、美國(guó)總統(tǒng)綠色化學(xué)挑戰(zhàn)獎(jiǎng)(2001)、加拿大綠色化學(xué)與工程獎(jiǎng)(2010)等. 他開創(chuàng)的A3偶聯(lián)反應(yīng)收錄在《Name reactions》, 交叉脫氫偶聯(lián)反應(yīng)(CDC)收錄在《有機(jī)人名反應(yīng)、試劑與規(guī)則》的書中。任英國(guó)皇家化學(xué)會(huì)(2004-2020)《Green Chemistry》及 2020-《Chem.Commun.》 副主編。